A Selection Process for Genetic Algorithm Using Clustering Analysis

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Selection Process for Genetic Algorithm Using Clustering Analysis

This article presents a newly proposed selection process for genetic algorithms on a class of unconstrained optimization problems. The k-means genetic algorithm selection process (KGA) is composed of four essential stages: clustering, membership phase, fitness scaling and selection. Inspired from the hypothesis that clustering the population helps to preserve a selection pressure throughout the...

متن کامل

SELECTION OF SUITABLE RECORDS FOR NONLINEAR ANALYSIS USING GENETIC ALGORITHM (GA) AND PARTICLE SWARM OPTIMIZATION (PSO)

This paper presents a suitable and quick way to choose earthquake records in non-linear dynamic analysis using optimization methods. In addition, these earthquake records are scaled. Therefore, structural responses of three different soil-frame models were examined, the change in maximum displacement of roof was analyzed and the damage index of whole structures was measured. The soil classifica...

متن کامل

Automatic Feature Subset Selection using Genetic Algorithm for Clustering

Feature subset selection is a process of selecting a subset of minimal, relevant features and is a pre processing technique for a wide variety of applications. High dimensional data clustering is a challenging task in data mining. Reduced set of features helps to make the patterns easier to understand. Reduced set of features are more significant if they are application specif ic. Almost all ex...

متن کامل

A feature selection Bayesian approach for a clustering genetic algorithm

Feature selection is an important task in clustering problems. Some features help to find useful clusters whereas others may hinder the clustering process. In other words, some selected features can provide better clusters. Besides, the feature selection process also allows the reduction of the dataset dimensionality, improving the clustering method efficiency. This work describes a Bayesian fe...

متن کامل

Slope Stability Analysis Using a Self-Adaptive Genetic Algorithm

This paper introduces a methodology for soil slope stability analysis based on optimization, limit equilibrium principles and method of slices. In this study, the slope stability analysis problem is transformed into a constrained nonlinear optimization problem. To solve that, a Self-Adaptive Genetic Algorithm (GA) is utilized. In this study, the slope stability safety factors are the objective ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Algorithms

سال: 2017

ISSN: 1999-4893

DOI: 10.3390/a10040123